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ABSTRACT

\

When a rectangular plate of incompressible neo-Hookean

elastic material is subjected to a thrust, bifurcations of the

flexural or barreling types become possible at certain critical

values of the compression ratio. The states of pure homogeneous

deformation corresponding to these critical compression ratios

are states of neutral equilibrium. Their stability is investi-

gated on the basis of an energy criterion, without restriction

on the thickness of the plate.

The critical state corresponding to the lowest order flexural

mode is found to be stable (unstable) if the aspect ratio

(thickness/length) is less (greater) than about 0.2. Agreement

with the classical Euler theory is established in the limiting
Accessio For
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1. Introduction

We consider a rectangular plate of incompressible isotropic

elastic material, with neo-Hookean strain-energy function, to

be situated with its edges parallel to the axes of a rectangular

cartesian coordinate system x . The plate is acted on by forces,

applied as dead-loads normally to the faces of the plate which

are perpendicular to the 1 and 3 axes of the reference system.

The faces perpendicular to the 2-axis are force-free. The con-

straints on the 1 and 3-faces are such as to permit the plate

to undergo pure homogeneous deformations under the action of

the applied forces. The load in the 1-direction is assumed to

be a thrust and at certain critical values of this thrust

bifurcations occur.

If the load in the 3-direction is a tension and the 3-

dimension of the plate is sufficiently large, we may assume that

these bifurcations are plane strains in the 12-plane, possibly

superposed on a uniform extension in the 3-direction. These plane

strains may be of the flexural or barreling types. The latter have

little practical interest (see §8). They are discussed in the

present paper in the interest of completeness, since their in-

clusion involves negligible complication of the discussion.

The critical compression ratios in the 1-direction at which

bifurcations occur have been previously discussed by a number of

authors with various degrees of generality. For flexural bifurca-

tions of a neo-Hookean incompressible material they were first

determined by Biot [1]. They were determined by Sawyers and

Rivlin [2], for an arbitrary incompressible isotropic elastic

material, in both the flexural and barreling cases.
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In the present paper we discuss the stability of the states

of pure homogeneous deformation at which bifurcations occur. The

stability criterion employed is the energy criterion and the pro-

cedure used is essentially that of Koiter [3,4,5] An equilibrium

state of the system is a state of deformation at which the total

potential energy of the system has a stationary value, i.e. at which

its first variation is zero. This state will be stable or unstable

accordingly as this stationary value is or is not a proper minimum,

i.e. accordingly as the second variation of the potential energy is

or is not positive definite.

A state of pure homogeneous strain corresponding to a bifur-

cation is one of neutral equilibrium. It will be stable if the

potential energy is greater for every state lying in some neighbor-

hood of it, which satisfies the kinematic constraints. It will be

unstable if the potential energy is less for some such state.

(The neighborhood is limited to sufficiently small deformations in

the 12-plane superposed on a uniform extension in the 3-direction.)

We determine whether this is the case by calculating the stationary

value of this excess potential energy. The critical pure homogene-

ous deformation is stable (unstable) if this stationary value is

positive (negative).

These calculations, which are rather cumbersome, are carried

out without restriction on the magnitude of the aspect ratio

(2-dimension/l-dimension) of the plate. They lead to the conclusion

that, for the lowest mode of flexural bifurcation, the pure homo-

geneous state is stable, provided that the aspect ratio is less than

about 0.2 and is unstable for higher aspect ratios. The stability

* In formulating the problem we have had the benefit of extensive discussion
and correspondence with Professor Koiter, for which we are extremely grateful.
Most of his suggestions have been incorporated in this paper, which owes much
to his generous help and advice.

L-A
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at low aspect ratios is studied by means of an asymptotic

formula for the stationary value of the excess potential energy

which is valid up to degree 5 in the aspect ratio. This agrees

well with the exact calculations up to fairly high aspect ratios.

Moreover, in the limiting case as the aspect ratio tends to zero,

it agrees precisely with the result derived by Euler on the basis

of elastica theory.

ILI
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2. Statement of the problem

We consider a rectangular plate of incompressible neo-Hookean

elastic material, which has its edges parallel to the axes of a

rectangular cartesian coordinate system x . Let be the vector

position, relative to the origin of the system x , of a generic

particle of the plate in its undeformed state (state 0) and let its

bounding surfaces in this state be

i =  ' C2 ±2 C3 = ±3 ( 3>>t 2) . (2.1)

We suppose that the plate is maintained in an equilibrium

state of pure homogeneous deformation (state I), with extension

ratios XX2$,X 3  and principal directions parallel to the coordi-

nate axes, by normal forces applied to the surfaces I ±1 and

3 = ± 3 the surfaces E 2 a ±2 remaining force-free. Let the

resultant loads applied to the surfaces &1 = ±tl and 3= -3

be ±R1  and ±R3 respectively and suppose that R, < 0 (thrust).

In state I, we suppose that the surfaces initially at

±l and 3 ±3 are constrained so that, in the deforma-1 3 3
tion, they move parallel to the 1 and 3-axes respectively, but

points on them are free to move normal to these directions (i.e.

the tangential components of the surface tractions are zero).

Let X be the vector position in state I of the particle

which has vector position in state 0 . Then,

XI = i I , X2 =22 X3 = 33 , l2X 3 1. (2.2)
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We now consider that the plate undergoes a further deforma-

tion which is the superposition of a uniform stretch in the 3-

direction and a plane deformation parallel to the 12-plane. We

call the state which is then reached state II. We suppose that

the particle which is at X in state I moves to x in state II,

where

x = X + u , (2.3)

and

U u 1 ( 1, 2), u2 = u2 (&1, 2), U3  x 3E 3 . (2.4)

Since the material is incompressible u must satisfy the relation

+ U1 '1U2 92 ul, 2u2,1 ) + = 0 . (2.5)

Let WI and WII denote the strain energies, per unit

volume, in states I and II respectively. Since the material of

the plate is neo-Hookean, they are given, in appropriate units, by

I T1 2 2

(2.6)

W lfx 2 +x 2 + x 2 + x 2 + X2(1+E)2 -3]I91, 2,2 1,2 2,1 3

With (2.2), (2.3) and (2.4), we obtain from (2.6)

W - W x U + X2u2 2 + XE
1 W 1  1, ,

1(u 2 + U 2 + 2 + U 2 + XE 2 ) (2.7)+ $(I,1  292  1,2 2,1 3 (

LA
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We consider that state I is an equilibrium state. We con-

sider also that in state II the resultant loads on the faces of

the plate are the same as in state I and that, while state II is

not necessarily an equilibrium state, in it the particles of the

plate are at rest, at any rate instantaneously.

The Piola-Kirchhoff stress in state I, denoted Hal is

given by

2  X2

11 12. X' 33 - x - 'X2 (2.8)
1 3

the remaining components of nli being zero. Then,

R, =4U I t , R= 4In33 (2.9)

It follows that, in passing from state I to state II, the in-

crease in potential energy of the loads is

- R u 1  - 2R3x3EL 3

- - 2t3f f (nllul, 1 + n3 3 x 3 E)d~1 dE2  (2.10)

-t -L1

Let GI and GII be the potential energies of the system

(plate and load) in states I and II respectively. From (2.7) and

(2.10), we obtain, with (2.8),



-8-

G1 1-G 2 2 2 f'+2X 2E
def G IIJ fG 1 U1,1 4 Y ,

2 1

I u 2 +U 2 + U 2 + u 2 + X 2)dd2 (2. 1)

+ ( 1,1  U2 ,2  1,2  u 2 1  3  1 2

Using (2.S) to substitute for u2 ,2 in (2.11) we can rewrite

(2.11) as

12 f1 X 2E2 J
1' [X2 X2G = 2 13f -'" (u, 2 u2 , 1  u,u 2 , 2 ) + "+"

-£2 -t1

l+ u 2 + u 2 +2 + U + U 2 + X3E2)} d 1d. 2  (2.12)

The necessary and sufficient condition for stability of the

plate in state I, under the specified loading conditions, is that

G be positive definite for all u and E lying in a neighbor-

hood of u = 0 , E = 0 and satisfying the constraint (2.5)

throughout the plate, as well as the kinematic constraints

E = constant everywhere,

(2.13)

U1 = constant on l = -i

We shall investigate the validity of this condition when

state I is a critical state for existence of a bifurcation

solution.

L
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3. The bifurcation solution

A necessary condition for stability of state I is that the

second variation of G be non-negative for all sufficiently small,

kinematically admissible values of u1 ,u2,E . This second varia-

tion G2 [ulU 2 ,E] is given, from (2.12), by

G2 [u1 u2 E] - U t2 ft 1 (u 1 2u 2 1 u 1 1 u2 ') X E2

- 2 1
+ u2+U2+U2+U 2 + X2.2 9d (3.1)

"Zuill 292  u1 2  2,1 3~) d 1d 2 *

u1 ,u2 ,E must satisfy the kinematic constraint implied by the

linearized incompressibility condition

u + 1
i u 1  U2 , 2 + E = 0 (3.2)

1 2

which is obtained from (2.5), and by the conditions (2.13).

A sufficient condition for stability of state I is that

G2 [ul,u 2,E] be positive definite. Thus, state I is at the

stability limit if G2 [ul,u 2 ,E] has a zero minimum for

some non-vanishing ul,u 2 E .

We shall now determine the values of u1 ,u2,E for which G2

has a stationary value, subject to kinematic constraints (3.2)

and (2.13). These are given by setting the first variation

6G2  of G2  equal to zero. We take account of the constraint

(3.2) by the method of Lagrange multipliers and denote the multi-

plier of (3.2) by -2t3P We then obtain, with the notation

2 A2/xi
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G 2 3f r (Ul,l-XU2,2 )Ul1 + 2,2"U ,l' 2) 2,2

-2 1l

+ (U1,2 +xu2, 1 )SU 1,2 + (U2 ,1 +Xu1 ,2)6U2,1

(2 + x 2E -P)6 d = d 0 (3.3)

2 312

This relation may be rewritten as

(u +U 1  - ps-jU PP d

I !iI -zl~~q ,I~~uz~1,11 ,22_ __) z'l * (u2,11+u2,22. '_ _ u

tfu2 f 1 2
2 1

-(2X 2E + XE -P)SE d- d&
2 312

f [(Ul,l-XU2, 2 - fl) 6Ul + ('2 ,1 X~Ul,2 )6u2
] =-dC2-2  1 LI= -£

ll 12

- 1(u 1-Xu2 - f--)u 1 + (u2 1 +Xu1 2 )6u 2 i 0 34

f [u 2 , 2 -Xu1 , I X22) u * (u1  +Xu = 0 . (3.4)

,22 2e

Equation (3.4) yields, with (2.13),

U + U 1 = 0
1 ,1 1 1 ,2 2 x 1 0 '

~1 (35S)

U2,11 2,22 -22 P92

2

4 2(2X 2  2 2  f 1

2 2.) 3 )E -pd d&2

2 1

Also

U2,1 + U 1,2 0
on 2 = 2 (3.6)

U2 2 -2
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and, with (2.13),

U2,1 U1,2 0z2 ~ ~~~on I = -z 37 [
£ 2 

1 A u 1- d ( 370U , - 2,2 - )dx)i 02

Equations (3.5)-(3.7), or equivalent equations, have been

previously obtained by a number of workers (see, for example,

[1,2]) using somewhat different procedures. They yield, with

(3.2), solutions of the forms

Ssinl U CosSu1 = '- u2=,

(3.8)

cosil2] X1 $

=- 
--sinQ l I n ,Q

where

a = nn/2tZ1  (n=l,2,...) , (3.9)

the upper (lower) solution corresponding to n even (odd).

In (3.8) U is a function of &2 only and the prime denotes

differentiation with respect to 2 " is defined by

U" - ,2U (3.10)

and U satisfies the differential equation
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-~v X2 1)2U' + X2 a4 U- 0 (3.11)

and the boundary conditions

U"i + X2Q2 U - 0

U fi - (~22+1)SI2 U M 0on2 t2(.)

We obtain two possible solutions to (3.11) and (3.12).

With the notation

n1 =-~ (3.13)

one of these solutions may be written as

U2 )=M(coshQE 2-mcoshE)

ax =2 2coshXrl (3.14)

(A2+1) coshn

where A and n~ satisfy the secular equation

4X3tanhn = (X2+1)2tanh~n .(3.1S)

The other solution may be written as

U(E M(sinhAn 2-msinhQE 2 )

(3.16)

M= 2X2sinhXAn
(X2+1) sinhn



where X and n satisfy the secular equation

4X3tanhXn - (X2+l)2tanhn •  (3.17)

We note that for any specified n , each of the equations

(3.15) and (3.17) yields a unique value for X .

The deformations described by (3.14) are antisymmetric with

respect to the 13-plane, i.e. they are flexural deformations.

Those described by (3.16) are symmetric with respect to the 13-

plane, i.e. they are barreling deformations.

The two secular equations (3.15) and (3.17) can be rewritten

as

sinh+l) - (X+l){X(X+l)2+(X-l)2 .sinhX~l'n 2 (3.18)
sinh(X-l)n (X-l) 1 (X+l) 2-X(X-1) 2

where v = 1 for flexural deformations (equation (3.15)) and

v = -1 for barreling deformations (equation (3.17)).

We note that each of the pairs (3.14)2, (3.15) and (3.16)2,

(3.17) leads to the result

m2 = Xsinh2Xn (3.19)sinh2n

By substituting in (3.1) either the--upper or lower expressions ....

(3.8), we obtain, by using (3.11), the result

2 2 112 2G2 = 2e2 J l2+l)1n (UU') - (UI"')' jUU) d 2

2 (3.20)

We now carry out the integration and use (3.12) to obtain
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G2  0 (3.21)

We conclude that the critical state for which G2 has a

stationary value is a state of neutral equilibrium.

KH
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4. Stability in the critical case of neutral equilibrium

We have seen in §2 that the necessary and sufficient con-

dition for the plate to be stable in state I is that G , given

by (2.12), shall be positive definite for all u1 ,U2 ,E lying in

a neighborhood of u1 a u2 
= E = 0 and satisfying the kinematic

constraints (2.5) and (2.13). We now develop this condition fur-

ther in the case when state I is a critical state of neutral

equilibrium discussed in §3.

Denoting by u 1 , u2 , 0 O , p the values of U2,£,p

given by equations (3.8), we decompose an arbitrary u1 ,u2 ,E in

the following manner:

A A

= au1 + Vl, u 2 = au 2 + v 2 , E F , (4.1)

A A

where v1, v2  is orthogonal to ul' u2,' i.e.

J f ( v Au 2v2 )dld 2 = 0 , (4.2)

_t2 -ti

and a is given by

t2 t1 A

J J (ul'u 2 u 2 ) d d&2

f 22 1 243~
a = t"-)

ft2 t(A 2 +A2

-2 21

Substituting from (4.1) in (2.12) and using (3.1), (3.5)-

(3.7) and (3.21), we obtain
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G t 2 1ii 1 + J 2 2 + 2 +-X2-2.r"2£ 2 2 22
G T v2+2 2+V2,9 A3F)

J%
2 1

+ X (v1,2v2 ,1 -v1 ,1v2,2 ) +

+ pX- .L v 2 , 2 )}d d (4.4)

where p is given by (3.8). From the incompressibility con-

dition (2.5) and (3.2), it follows that v1 , v2 , F must satisfy

the relation

klA2F
xv + + + a+

1 2,2 2 v1,1 1+F aUl'i^2'2"Ul,2U2'l)

A A A A

" a(U,1 V 2 ,2 + U2 2 v 1 1  u 1 2 v 2 1 - 2 1v 1 2 )

V 1 1 v 2 2  V 1 2 V U2,1 . (4.5)

From (3.8) we obtain, by carrying out the integration with

respect to E,

f 2 1 A 2 1J ~~d 2  0 1 ~ 1 1 2 ,2- 1,2 u2 ,)ddt2

-2 -1 -Z 2  -.1  (4 6

Then, using (4.5) to eliminate the term in (4.4) which is linear

in v1,1 and v2, 2 , we obtain with (4.6)
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2 f i r1 2  2 2 2 22

G =2L J2 (Vl' 1+22V,2 V2,1+ 3F

2 1P

+ X(V, 2v -v v2 ,2)

2,1 2+F

- aX 3 2( , 2v2 ,2+ 2 ,2v1,1-u 1, 2v2,1 -u2,1v1 ,2)

- aX3p(vlv2 2- v ,2v2 , d d 2  (4.7)

It follows from (2.13), (4.1) and (3.7) that

V1,2 a 0 for E a-1 " (4.8)

For a fixed small value of a , we now determine the values

of V1 , v2 , F , satisfying the kinematic constraints (4.5) and

(4.8) and the orthogonality condition (4.2), for which G has a

stationary value. Since these values must be O(a2) , we intro-

duce the notation

vI = a2 I , v2 z a2 U2 , P = a2f . (4.9)

T-henneglecting terms of higher degree than the fourth in a

we obtain from (4.7),

G aG4 a2t Tii 2 -2 2 - 223 f,1"292 2,12 3
t2 t1(

1,2 2,1 1,1 2,2 2

-+U u _u A+G G "u u u )J d{ d . (4.10)
-3 ll 2,2 22 l " 1,2 2,1 2,1 1,2 2"
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Neglecting terms of higher degree than the second in a2 , the

incompressibility condition (4.5) can be written as

a21_- 1- +2 ..

a [ U- u, 1 +2+ E+ 3 UU 2 2 Ul,2 U 2 ,] 0 (4.11)

and the orthogonality constraint (4.2) may be written as

2 12

We determine the values of Ui1 , E2, for which G has a

stationary value by equating its first variation to zero, re-

laxing the constraints (4.11) and (4.12) by the method of Lagrange

multipliers. We denote the Lagrange multipliers for the con-

straints (4.11) and (4.12) by -2Z3a
2p and 2t3a 2X respectively,

where I is a function of 1',2 and X is a constant. We

thus obtain from (4.10), after some algebraic manipulation,

3 (- ( 1 6U1 + D ¢2 6U2 - Ed)d&:d&2

i2

222

f [I 1 26ad& 2) 0 ,(4.13)

where 6G dul 6U 21 6E denote the variations of G, 1, '12, E

and
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0, u UP. 3 1 P 2U 1)1 1,11 1,22 3 1 2,2i1

01 u 72- j'j , -pl 9) X- u22 2,11 +~2,22 X2 ~2- 3 'll-P 1

1  + U 2  + 2,1 2 2 4.4

2, 2 ,2 + 1,1 + 2,1(.4

1-

11

+XU X~pu1
1,1 2,2 7 ,

From (4.13) we obtain, bearing in mind that SE is constant

throughout the plate,

=,M0 t '2 = 0 f2 f.d d (4.15)

2 1

We also obtain, with (4.8), (4.9) and (3.7)

0, 02=0 fr 2 -t 2 (4.16)

and

u 2  - 0 , ±X*- say

2, for E2. ±tl~ (4.17)

where e is a constant.
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Equations (4.15)-(4.17), together with the conditions (4.11) and

(4.12), yield the values of Ulf U2 , E , subject to the kine-

matic and orthogonality constraints, for which G has a station-

ary value. We discuss the solution of these equations in the next

section.

A

kA9
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5. The deformation for which C has a stationary value

Introducing into (4.14) the expressions (3.8) for

U 1 ' u2, P we obtain from (4.15) and (4.11)

-- 1 - 1 . ,,

u1,11+ u1,22 "- p - 9 ($"U - O'U')sin2Qa + XiI,

ii + U 0
2,11 2,22 2 P'2 " A -2 (5.1)

4 W(O"U' - 8'U")cos2QE} + xu ,

f2 id dE U 4LL 2  + 2A~)

2 1

and

',a  u-z, + 2 - (UU')' -wccos2t 1  (5.2)

where

a UU" Ut2 (5.3)

and w = 1 or -1 accordingly as the upper or lower solution

is taken in (3.8).

---. . .. Sixi-a_-l:]thi bouindary conditions (4.16) may be written as

u"1,2 + X '2,1 = I sin2E
on E2 a t:2" (5.4)

u2,2 - Xu 1,1- " 2X2  2 (1 + wco52s1)

h 2e Q

Wi~th the boundary conditions (5.4) and (4.17), we obtain
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the following solution of equations (5.1)1,2 and (S.2), for

which U 1 ' U2 is orthogonal to u1I u2

U sn2Q1 +

U2 U U cos2Qg1 + , (s.s)

p- P cos2D2E + Q

x =0,

where V and Q are given by

1 uu x + f) 2

(5.6)

- ,, 1 B'u 2(2- +
Ql (UUt) + - U X2 (2e E)

and U,, U and P are functions of E2 only , which satisfy

the ordinary differential equations

422U 2IP w B"U a

U1 - 4aa1 -7 7 (' -')

and the boundary conditions

2 -XW

2on 2 =±-2 ." (5.8)
1"' zxsaU, = - __'u'--= 2 20 (.

2 2xx2Q

-- U - + 2-

|2

..... th o ndrt.n i in
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From (57), we obtain

2. A2 (59)

2 x2. 40 2 U + W [c(a" 4a 2a + 2(B"U -''I

4XQZ "2

Then, from (57) we obtain with (592 (5.3), (3.10) and (3.11)

U(iv)- 49 2 (X2+1)U' + 16A 20l~ 4 - 3w 2 (5.10)

With (3.14) and (3.16), equation (5.3) yields

a= vM 2 {~x2 + m2 - 1. m[v(X-1) 2 cosh(X+l)Q 2

+ (X+1)2 cosh(-1)I21 . (5.11)

Substitution of (5.9) in (5.8) yields, with (3.11) and (3.12),

the boundary conditions in the form

U" + 4X2Q2 U= w -S2 X+)U
72

on ±z= (5.12)
-~ 22 _

U 4(2x2+1>jj2U' 2w (2X2-1)Q2U'2

We note from (3.14) and (3.16) that

'2 = 1 ~ Xcosh2XQE + Mcs 2 2 2

-2Xm[cosh(X+1)QE 2 - jcosh(X-1)Q 2 ]1

UU =IM2OsihX + M2 sinh22C2 (.37 {s h2 2
- M[(X+1)sinh(X+1)QE2 + v(X-1)sinh(X-1)QE2f
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It can easily be verified, using (5.11), that equation

(5.10) has a solution of the form

--= Mlsinh2A 2  + M2 sinh2Q 2  - M 3sinh(+l).o&2 -
3 (xl)~2  Mhsinh(A-l)n 2

(5.14)

where, provided that X # 3

3wo 2 (2-1)(X.+I)
3 2  (3X+1) (X+3)

(5.15)

3w9 2 (A2-1)(X-I)

M= 2  (3,-1) (X-3)

The integration constants M1  and M2  are determined from the

boundary conditions (5.12), with (5.13), as

M1 - SM 2  {4X 2 f1cosh2n - ( 2+1)f2 sinh2},
32AA2A

M2  {XAf 2sinh2Xn - (x2 +lf1cosh2Xn,
16A2 A 2

where

3sn2rohn- 2 2
A = 4X sinh2Xncosh2n (A +1) cosh2Xnsinh2 '

f, = m{f(X)sinh(X+l)n vf(-X)sinh(X-1)n}

-(7X2 +1)(Xsinh2Xn + m2sinh2n) , (5.17)

f2 = m{g(X)cosh(X+l)n + vg(-X)cosh(,-1)n}

- 4(2X 2-1){X2cosh2Xn + m 2cosh2n - v(X2+m2)}

with f(X) and g(X) defined by
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I

f(X) = (X+1)1 3(X21) (SX2+2X+l) + 7X2+ l,

(3X+1) (X+3)

(5.18)
g( = 3(x2-1)(X+1) (7X2 -2A+3) + 8A(2X 2-1)

(3X+1) (X+3)

The constants E and e can be obtained from the relations

(5.1)3 and (4.17)3 which express the dead-loading conditions on the

faces 3 = +-£3 and E,= ±e 1  respectively. Using (5.5)3 to

substitute for p in (5.1)3, we obtain with (5.6)2,

(3X2 + 2 e = (5.19)

where

H 2 1i2  f 2 (U '2 + Q2U' 2 )d 2 . (5.20)2X n l2 2 -t2

Substitution from (5.9) and (3.8) in (4.14)6 yields
6

= + 4X2 Q2U + (x'+2 U ) cos2Q

+ 1 [2X2E + (3X2+2)F + 1 (U,,2+ Q2U, 12

1 2  LU (U + X2 n 2 U) (521)

From (4.17)3 and (5.21) we obtain, with (5.12), (5.3), (3.10)-

(3.12) and (5.20),

2X2E + (3X 2+X2 )- H . (5.22)

Equations (5.19) and (5.22) yield
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X3H XAkH
= 3 H (X2_1) ' e - (2X+X 3 ) , (5.23)

with

K = 5A 3 + 3X(XA+l) + X3 (5.24)

With (3.14), (3.16) and (3.19), equation (5.20) yields

H= M2Q2(X2-_1)( + sinh2+ - (5.25)2 X2+ 2Xn
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6. Stationary value of G

We now use (5.5)1, 2 and (3.8) to substitute for Ul, '12
A A A

Ulf u 2, P in (4.10) and carry out the integration with respect

to . We obtain

_ £2

G - 2t1t3 f (g1 + g2td 2 , (6.1)
-£2

where

g= 1 e2 + (2X"2+x'2 E e(2X 2 + U2n2 +

2 2 (6.2)

1" {4Q2 U2 + ui 2+ U 12+ 40 2 U2 - 4XSI(UU 1 )

+ x (U'-U'- 2XM'U1  2UU"

By using (5.6)1, (5.19) and (S.22) in (6.2) 1 and (5.9), (5.3),

(5.10) in (6.2)2, together with (3.10) and (3.11), we obtain

= 2+E {Uv, 2 + Q 2 12 
- 2 2  29, x2Q12 -U T x nH - [U'(U"+X a U)] f

+ (UU) [(UU') + 2 a'IU
4X2X2 Q2
2 (6.3)

92= 3 {(u"X 2 2U) - 2B'u'}U'
2 16X2ex

+ 1 {a'2+ 4nl2 a2 + 4a ($U'- X2Q 2 8U)}
32X 2Q2

2

1 {UI(U" + 4X2Q 2 U ) 4Q 2 (2 2 +1)u']

L8X 2. a.. . 2.
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+ U'(3UU"'- U'U" - 2 2UU')
2

+ - U[6U"2+2 52 2+l)UU" 2 U'2 (5 2+ll)

2

+ 3Q2(X 2 -I)a + 6V'U' + (2U"- 38)(U"+ x2 2U)]

X2
A2

In deriving the relation (6.3)2, the following identity is used:

{n2 (X2-l)a_ a(U"+ X2 Q2U) + 2$'U'}' E 0 . (6.4)

We now substitute from (6.3) dn (6.1) and use the boundary con-

ditions (3.12) and (5.12), together with (5.23), to obtain

t - 4ZIZ2 3 (r 1 + r2 + r3 + r4 - r5) , (6.5)

where

r= (7X2 + 4XA 1)H2

1 TK 3

1 [UU' (U'2+ X2 Q2U2)] 2 =£ 2

2 2

r 3 W [-(7X 2 +l)UU'U'+ 4(X2 +1)U'2U] ,
2t2 22 (6.6)

r4 = 3: [W(U"+ X2Q 2U) - 28'U ]U'dC2
.e2 12 2 2 ' 2-'[)

[a + 402 + 4~ 'U- g2

5 64A2A 2Z2 t
12

+ 168'U' (UU')'+~ 8X2 2(UU')' 2 ]d 2 ,
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and K and H are given by (5.24) and (5.25).

We now introduce into (6.6) the expressions (3.14), (3.16)

and (5.14) for U and U , together with (3.10), (5.11) and

(5.25), and after carrying out the integrations, we obtain, with

the notation

M M/2t 2 , (6.7)

the following expressions:

1 M X (7n X 2 +4XX3+1)(X2_1) [V 2 _3 sinh2X-12
S3 3 X2+1

2 = X (2 - sinh2Xn{v(X 21)m2 + 2X 2cosh2An
2  2X 2 2(X 2+1)

2 2+ (X +1)m cosh2n

2Xm[(X+1)cosh(X+l)n+v(X-l)cosh(X-l)l},

r Mrl 3  {8X(x 2 +1) 2 yly +(7X 2 +) (X 2 1) 2 sinh2X}
3 = 128A5 (X2 +1) 3 - 27 2 ,

(6.8)

3m n~~ (21, 3
r4= _3_34 " {___ + I [C4(k,4-k) + i4(k,k-4) ]

64X k-i

2
+ k [Rh(k-l,3-k) + 4(k,k-2)],

MRn3X 3  3
r = s { 5 +kO 0 [ 5 (k,4-k) + 5(k+l'k3)]

2+ 1 [4 5(k-l, 3 - k ) + c 5(k,k-2)]},
k-l

where the ;'s are given in the appendix (§ 9 ), K is defined

by (5.24) and yl, y2 v Y3 are defined by
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Y a F1sinh2Xn + F2sinh2n

-m[F 3 (X)sinh(X+1)n + vF 3 (-X)sinh(X-l)n]

2 = 2XF 1 cosh2Xn + 2F2cosh2ri

-m[(X+)F 3 ()cosh(X+l)n + v(X-1)F 3 (-X)cosh(X-1)n] (6.9)

73 = X
2cosh2Ari + m2cosh2n -v(X 2 +m2 )

-2Xm[cosh(X+l)n -vcosh(X-l)n]

with F1 , F2  and F3(X) defined by

F1 = (4X2 flcosh2 n - (X 2+1)f sinh2n]

F2 = ix [Xf2 sinh2Xn - (X 2+1)f cosh2Xn] , (6.10)

F3 (X) 24X

Here, A , 1 and f2 are given by (5.17) and m is given by

(3.14) if the deformation is flexural and by (3.16) if it is of

the barreling type. In either case m2  is given by (3.19).

Introducing (6.8) into (6.5) we obtain an expression for

in the form

S4tit2t 3 qn3X 3(12- K-gI) ,(6.11)

where

K 1 (7X2+ 4XX 3 + 1)
T 3

91 * n I2 1)2( + X- 3 sinh2Xn 2

(6.12)
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2- 2 2_ 2) 2 +X2 2 22X = sinh2Xniv(X -1)m2 2X cosh2Xn+(X +1)m cosh2n
X 2+1

-2Xm[ (X+l)cosh(X+l)n+v(X-l)cosh(X-l)n] I

1 X2+12 2 2 2

64. 3 21 {8X 2 ) y1 y 3 +(7X +1) (X -1) 2sinh2Xr }

3(X 2  )
32 2  {nj 4 + [ (k,4-k) + C4 (k,k-4)]32X 2  k=l

2

+ + [ (k-l,3-k) + C4 (k,k-2)]}
k-l

3
fC {n5 + k1 [C5 (k,4-k) + C 5(k~l'k-3)]

2
+ [ k-l,3-k) + c5 (k,k-2)]}k=l55

In §8 we show the numerical dependence of G on n

However, before discussing this we shall consider, in the next

section, the asymptotic case when n is small, i.e. when the

aspect ratio t2/le is small, and the bifurcation is of the

flexural type.
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7. The asymptotic case of small aspect ratio

In principle we could find an expression for G , for a

flexural bifurcation, in the limiting case when n << 1 , direct-

ly from the expression (6.5), where the P's are given by (6.6),

by expanding the P's in powers of n and neglecting all but the

leading term in the expression for G so obtained. However, this

leading term would be of degree eleven in n and the labor in-

volved in obtaining expansions of this degree for each of the r's

would be excessive. We recognize that this difficulty arises from

the fact that, for n << 1 , the expression (3.14) for U is

O(n2) and the expression (5.14) for U is O(n ) . Accordingly,

in this section we return to the equations (3.11) and (3.12) for

U and obtain a solution, in the form of a power series in n

which is normalized so that u2 (ZI,O) = 1 With this expression for

U , we solve (5.10) and (5.12) to obtain a corresponding expression

for U , in the form of a power series in n . With these ex-

pressions for U and U , we then obtain from (6.5) and (6.6)

an expression for G , again as a power series in n.

We define the dimensionless thickness coordinate t by

t =2/2 (7.1)

Then, with the notation

U(t) = U(Z2 t) , (7.2)

we obtain from (3.11) and (3.12)
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22

1 d14U x2+I dU U =

and

1 d2 U 2^+ X2U= 0 ,

n 2  dt 2  0

for t = ± 1. (7.4)
1 d 3 '%1 - (2 X2+1) . dU 0
n3  dt 3  n,

The critical value of X at which a flexural bifurcation

can occur is related to n by (3.15). It has been shown [ 6]

that for n << 1 , this relation may be written as

X = 1 + aln 2 + a2n 4 + a3n 6 + O(n8) , (7.5)

where

2 2 16
a, = 2 , = 16 , "' (7.6)

With (7.5), we can obtain a solution of (7.3), with the boundary

conditions (7.4), in the form

212 4 2 14
U(t) = 1 + Alin 2 t2 + n (A2 1 t + A2 2 t )

+ n 6 (A31t 2 + A3 2 t 
4 + A3 3t

6) + O(n 8 (7.7)

where

1 =11
A 1 1  "" A2 1 

= " A2 2

(7.8)
4 1 1

A31 * ' A32. - , A3 3 = -
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We note, from (3.8), that we have normalized the solution (7.7),

so that the displacement 2 ( 1,0) - - 1 , the +(-) sign being

1 1applicable if fn , or Z(n-l), is even (odd).

With (7.1) and the notation

2 1i A
5(t) = U(-2t) , C AL - - d(7.9

we can rewrite (5.10) and (5.12) as

1 d 4U 4(X2 +1) d 6 2a- 3wi 2
2  dt 2  16 (X -1) d (7.10)

and

1 d~t U 2 + 02 w (7X2+1)^ dU
2~ 2~ U a-tTi dt + "

for t = - 1 . (7.11)

1 d3U 21 dU. 2.W (2X2 2

-- 7 - ' 1 ) ( dU )2-- 4(21 +1) 2t - 1 \rT

With (7.S)-(7.9), equations (7.10) and (7.11) become

1 d U _ 4(X2+1) d2 U + 16X25 . 8wok1l n2 n t

n dt 2  dt

+ 1 .+.3 13 + Ocn 5
' (7.12)

and

1 426 + 4 X2f.=.wQX 1TIf4 + 2 2 + 26 I4 + O~n6
32 dt2 3T (7.13)

1 d 3 1 - 4(2X2 1)1 d6 wQi1ln2(2 + 4n2 + O(4

n3 dt 3 fort = 1.
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It follows from C7.12) and (7.13), with (7.5) and (7.6),

that U may be expressed in the form

U c&wX'{ B t n 3t + B(B t + 2 2 t 3 ) + n 5(B31t + B32t3 B t5)

+ n7 (B 1t +...+ B t 7 ) + o(rg)} , (7.14)

where

B 1 B 7 B B 23
IB1 B2 2 -- 31 =7'

(7.15)

B 2 B B 1
32 2 33 6' B43  9 $ 44 r

We shall not require the values of B41, B 42

With (7.1), we now rewrite (6.6) as

4
r, 3 (7X2+ 4XA 3 + l)H2 ,r1 - 6 X ,

r X 4 U dU dU 2^

2 4 t=l

3 16X 51 2 n3  2 ,t - =I

3- 3 fl(( ', 2 6 + X2T2A A) dU) doU t
2 = 5/ r + U - 2 F a-5 -,t

A -1

1l CT2(d&2 -(idgdO A

r 3 J + 4n a2+ 4n2 T- x 2 2 '

64A 3n , a /

d~U ( d'~+8X2 df. d 1 dt (7.16)
16 a- sg b L-a aTee

where &t is given by (7.9) and and H are defined by
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n2  dt2  (7.17)
1 1i eI A d 2  dU 2

= f' 1 ((td 2  + Hd ))

We now substitute from (7.5), (7.7) and (7.14) in (7.16)

and, after carrying out the indicated integrations, we obtain

r1  X 4F1i 3 n2 +91 1 + O(n 6)
3 T TU 36(2+X3))

r X S1 4[ + 8 n1! ~n6 3
2 33

r3 [ _ "25 n + O (n 6  (7.18)

r X a.4 ;1 _: + 1 n4 6)

With (7.18), we obtain from (6.5) and (4.10)

4- a 4t 2 3 X3  6[G ~4

G = a G - 3 n(n)
(7.19)

G 6 1~ 2

We can compare this result with a result which was derived

by Euler on the basis of the elastica theory. In order to do this,

we first calculate the energy associated with the flexural defor-

mation au1 , au2  when the applied load is zero. Accordingly,

in (2.12) we take A.= . 2 = 1 and substitute ul, u2, E
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aul, au2, 0 , where u1 ' i 2  are the values of u 1 , u 2  given

in (3.8) with U U given by (7.7). Denoting the resulting

value of G by G , we obtain

2a 2G 8a1 3 n L1 + O(n2)] . (7.20)
, 2

Then from (7.19) and (7.20) we obtain, with X3  1

G anOIl )  . (7.21)

G 16t2

For the flexural mode of lowest order, we have n w. 2 /2t,

and (7.21) may be rewritten as

G Tr2 ra [1 + t 2e)2 (7.22)

in agreement with the result of Euler.
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8. Numerical results

The critical value of X at which a bifurcation occurs is

related to n by (3.15) or (3.17), accordingly as the bifurcation

is of the flexural or barreling type. These relations are plotted

as Curves I and II in Fig.l. Similar curves have been shown

previously by a number of authors (see, for example, [2]).

The approximate relation (cf.(7.5) with (7.6))

2 2 16 i

= .I n2 +. 1 , (8.1)

valid in the flexural case for small n, is plotted as Curve III.

The asymptotic expression (7.19) for G , valid for flexural

deformations, has been calculated on the basis of an expression

for u , normalized so that its component u2 (G,O) = ± 1

accordingly as n , or 1n-), is even or odd. In order to

compare with this expression for G , the exact expression given

by equations (6.11) and (6.12), we have to normalize, in the same

manner, the expression for u on which it is based. From (3.8)

and (3.14)1, we have

u 2 (tl,O) = ± M(l-m) , (8.2)

where m is given by (3.14)2 and the +(-) sign is taken

accordingly as n , or (n-l) , is even (odd). Accordingly,

in order to normalize our results in the desired manner we must

take

M and (8.3)
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With this expression for M , we can rewrite equation

(6.11) as (cf.(7.19)I)

- ZX 3
1 33 6*G 3 6G (8.4)

2

where G is given by

G 2n 1m (T2 -Kj~1 ) ,(8.5)2n3(1-rn)

and m is given by (3.14)2, while gl, g2  and K are given

by (6.12) with v = 1 .

The relation between G* and n provided by (8.5), with

X3 M 1 , is plotted as Curve I of Fig.2 for n < 0.6 Curve

11 shows the relation between G* and n provided by the asymp-

totic formula (7.19)2, with X3 = 1 , and we note that

the agreement is good at the lower values of n . In Fig.3 the

relation between G* and n , provided by the exact formula

(8.5), with X3 = 1, is plotted for a wider range of values of n

Calculations for larger values of n than those covered in Fig.3

indicate that the G vs. n curve continues smoothly, with G

tending to - as n (i.e., X - 3.383). We note (see §5)

that our calculations have excluded the case when X = 3 (i.e.,

n z 1.63). It was not considered worthwhile to investigate this

case separately, since our computations indicate that the G vs.

n curve passes smoothly through this point.

From Fig.2 or 3, we see that G is positive for values of

n below about 0.32. For the lowest flexural mode this
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corresponds, from (3.9) and (3.13) with n I , to an aspect
,

ratio Z2/Z 1 0.20. For larger values of n , G is negative.

Accordingly, state I, the homogeneous state corresponding to the

critical value of A at whi.h a flexural bifurcation occurs, is

unstable if n > 0.32, and stable if n < 0.32 and this stability

is not preempted by the appearance of a mode of lower order.

We note that for a specified value of n , the critical

value of X , given by (3.15), is independent of X . It
3

follows from (3.14)2, (5.17) aixd (5.18) that 6, f, and f2 are

independent of X3 Then, from (6.9), (6.10) and equations

(9.1)-(9.4) in the Appendix, it follows that y' Y2'0 Y3 and the

's in (6.12)3 are independent of A3 . Consequently, g, and

g2 are independent of X3 Also, for a fixed value of X , the

quantity K , defined by (6.12)1, decreases monotonically with

increase of X3 " Hence, from (8.5), G* changes monotonically

with X3  However, the dependence of K , and hence of G*

on X3 is very slight.

For barreling deformations, the exact expression for G is

given by (6.11) and (6.12), with v = - 1. We cannot normalize

the displacement u on which it is based in the same way as we

did for flexural deformations, since u2(Z 1,0) = 0 for barreling

deformations. Instead, we now normalize u so that u2(Z1 t,2)

I accordingly as I n, or (n-l), is even or odd by taking

M=- (86)
~2Z 2 2t(sinh~nmsinhn) (86
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where m is now given by the expression (3.16)2, appropriate to

barreling deformations. With this expression for M we can now

rewrite (6.11) as

- ZiZ3A
G 33 G* (8.7)

2
where

G* = n3 4(2 -Kg1 ) (8.8)
(sinhAn-msinhn) "

G* is plotted against n in Fig.4 for the case when

X3 = 1 . As in the case of flexural deformations the dependence

of G* on X 3 is very slight. We note that G* , and hence

G , is positive for all n . Accordingly, the homogeneous state

corresponding to a critical value of X at which a barreling

bifurcation occurs is stable.

We have included the discussion of barreling bifurcations

for completeness. However, it is well to realize that, for a

specified aspect ratio t2 /i , as the load is increased values

of A corresponding to flexural bifurcations of all orders are

reached before any barreling bifurcation is attained. Even if

these could be inhibited, the barreling bifurcation of highest

(theoretically infinite) order is reached first, corresponding

to wrinkling of the free surfaces.
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9. Appendix

The quantities 4 and C5introduced in §6 are defined by

1m 2(X -_1){(X-1)F (X) +(X+1)F (-X)}

5=4{16(A 2(X2 _1)m 2 + x 2 (X 4+h ) + 2+M2 )2  (9.1)

-2Am 2(X2-1)((X+1)3 + (A-i)3]1

+ 2[(X-1) 4+ (X+1)4 I(2X +1)m -(X2-1)2(X2+1)m }

The quantities C4 (,k) and ~ 5 jk) introduced in §6 are

defined by

7 j ,k)
C4 ( k) jX+k sinh{ (j +k) n}

(9.2)

O5 (,k) 5 ( s inh{ (j X+k)n}I

where j and k are integers and

Z4 (3,1) =-X(X-1) 
2mF 1 ~4(3,-l) = -VX(X+1)2 mlF,

T~4(1,3) -(X-1)2 2 T4'-)=-v(X+1)2mF2

Z4(2,2) = .(X+1)(X-1)

2m 2F (-) (93

1 22 3

T4(21O) =.v{16A F1+ m2 r(A+1) F 3 0) + (A-1) F 3 (Xl

Z 4(O,2) f= ~{16X2F2+ m2 [(X+1) F3(X) + (X-1) F 3( X)]}

~~11) -vX+1)m{4X2 F (X) + (X.1) (XF +F2

(1-)=-(X-1)m{4X2 F 3 (-A) + (X-1)(XF 1 +F 2)}
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and

Z5 (4,0) -64X 4(2 A
2 _1) Z 5 (0,4) - 64A2m 4

~(3,1) =- 32\ 2 (X.1)m{ (X+1) (3X
2 _-1) + 2X(X-1) I

5(3,-l) a-32vk 2 (x-1)m{(X-1) (3 X2_1) - 2(+)

15 (1,-3) - -64vX(X-1)m 
3 (X2 -2X-1)

5 (2,2) - 2m {1(X-1) 4[4-(X+1)(3X-1)]

+ 8X(X+1) 3 (x 2 +3X-2) + 32)L 2 (3X2 _1)1 ,

5(2,-2) =2m 2{(X+1) 4 4(X1)(3X+1)]

5 + 8X(X-1)3 (X2 3-2) + 32X?2(3 X2 1)}I , (9.4)

5', ) 4v(X2_.L)tm2LA.L1M.A
2 +3) - 32X2(X 2 +M2 ) ,

Z5 (0,2) =4v(X
2-1)m2 {(x2 _1)(3X

2 +5) - W4X 2 1

- 2X(X+1)[m 2+A(X2 +3X+lfl}

~5(1,-l) =-32(X.1)m{(X 
2+M2 )(X+1) (X 

2+X+2)

+2X(X-1)[m -_X(X2-3X+1)1}
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Figure Captions

Fig. 1 Relation between n and critical values of X

Curve I: flexure; Curve II: barreling; Curve III:

asymptotic expression, correct to O(n4 ) .

Fig. 2 Relation between G* and n for flexure, with X = 1
3

Curve I: exact expression; Curve II: asymptotic expression,

correct to O(n2)

Fig. 3 Relation between G and n for flexure, with X3 = 1

Fig. 4 Relation between G* and n for barreling, with X= 1
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